일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- python3
- 딥러닝
- Jupyter notebook
- CUDA
- colaboratory
- Deep Learning
- gpu memory
- object detection
- linux
- pyTorch
- urllib
- install
- YouTube 8M
- python
- face_recognition
- ppc64le
- Anaconda
- windows
- error
- dataset
- TensorFlow
- keras
- raspberry pi
- download
- FIle
- colab
- ubuntu
- shakeratos
- Windows 10
- dlib
- Today
- Total
Shakerato
FakeApp 1.1 Tutorial 본문
(Reference)
https://www.youtube.com/watch?v=ghTb2kZSpZE&ab_channel=IrrelevantVoice
1. Download any video1 and video2, ffmepg.exe(https://www.ffmpeg.org/)
2. Create folder c:\fakes\data_A
3. Create folder c:\fakes\data_B
4. Create folder c:\fakes\model
5. Copy ffmpeg.exe and video2 file to c:\fakes\data_A
6. ffmpeg -i video2.mp4 -vf fps=1 "a%04d.png"
7. Copy ffmpeg.exe and video1 file to c:\fakes\data_B
8. ffmpeg -i video1.mp4 -vf fps=0.5 "b%04d.png"
9. Extract
* Copy Path Data: and paste to same textbox because of bugs before start
9.1. Path Data: change to 'C:/fakes/data_A'
9.2. Start
9.3. Path Data: change to 'C:/fakes/data_B'
9.4. Start
9.5. After aligned faces extracted, you should delete some non-face images
because it makes training speed slower and quality lower
10.Train
* Copy Path Model:, Data A:, Data B: and paste to same textbox because of bugs before start
10.1. Start
10.2. When loss under 0.01, press
'q' After 3~5~10 hours later, you will get good model
(it's up to you)
10.3. After Trained, Delete C:\Users\[User]\AppData\Local\Temp\t.exe *** file,
_MEI88442 Folder (Name is up to system?)
11. Conv...
* Copy Path Model:, Data: and paste to same textbox because of bugs before start
11.1. Start
11.2. After Trained, Delete C:\Users\[User]\AppData\Local\Temp\m.exe *** files
* Tips
- fps: ... 0.5 1 ... 5 (up to you)
- More datasets make good quality
'Research' 카테고리의 다른 글
How to make video clips of the long video using ffmpeg (0) | 2018.03.27 |
---|---|
Deep Learning - GPU memory limitation, How to overcome it? (0) | 2018.03.26 |
Create environment for tensorflow 1.4 in Anaconda 3 (0) | 2018.02.10 |
Docker-Theano setup for ppc64le architure (0) | 2018.01.05 |
Multi-GPUs based Deep Learning Environment Construction (References) (0) | 2017.12.12 |