일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
- ppc64le
- YouTube 8M
- gpu memory
- 딥러닝
- Anaconda
- shakeratos
- download
- Windows 10
- keras
- dlib
- raspberry pi
- TensorFlow
- Deep Learning
- CUDA
- windows
- colab
- error
- install
- colaboratory
- ubuntu
- FIle
- pyTorch
- face_recognition
- python3
- python
- object detection
- linux
- urllib
- dataset
- Jupyter notebook
- Today
- Total
목록FIle (3)
Shakerato
(matlab이 설치되어 있어야 함) 1. 코드 다운로드 'https://github.com/leonid-pishchulin/poseval' 2. matlab 폴더에 임의의 폴더(예를들어 test)를 만들기 3. 변경하고자 하는 matlab 데이터 파일 복사(*.mat)을 위 폴더에 복사 4. starup.m 을 실행하여 addpath addpath('./external/jsonlab') 5. mat2json 를 위 경로를 포함하여 실행, json 형테로 모두 바뀌어 동일한 폴더에 저장됨 mat2json('./test')
## To avoid duplicate file names problem in Windows (e.g. Ab.txt, aB.txt),## At first, I download the dataset and renamed the file names in the Linux OS.## then, I copy renamed files to my Windows desktop for training deep neural network.## Renamed dataset also works well on the YouTube-8M training code. import osimport shutil oldpath = '/data/yt8m/v2/video/'newpath = '/data/yt8m/v2/video2/' fil..
import urllib.request as urllib2import timeimport logging def fileDownload(url, file_name): logging.basicConfig(level=logging.INFO) logger = logging.getLogger('[fileDownload]') num_of_retries = 3 time_interval = 2 for retrycnt in range(num_of_retries): try: u = urllib2.urlopen(url) break except Exception as e: logger.error(' Faild to download: ' + str(e) + ', Number of remaining attempts: ' \ + ..